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Bags of Binary Words for Fast Place Recognition in to scale and rotation, our experiments show that they are very robust

Image Sequences for loop closing with planar camera motions, the usual case in mobile
robotics, offering a good compromise between distinctiveness and
Dorian Galvez-lopez and Juan D. Tabd, Member, IEEE computation time.

We introduce a bag of words that discretizes a binary space, and
Abstract_W | method for visual ol - _augment it with a direct index, in addition to the usual inverse index,
stract—We propose a novel method for visual place recognition usin : : : P
bag of words obtained from FAST+BRIEF features. For the rst time, we as e).(plalneq in Section IV. T(_) the best of our know!edge, th'_s is the
build a vocabulary tree that discretizes a binary descripto space, and 'St time a binary vocabulary is used for loop detection. The inverse
use the tree to speed up correspondences for geometrical veation.  index is used for fast retrieval of images potentially similar to a given
We present competitive results with no false positives in vg different  one. We show a novel use of the direct index to ef ciently obtain

datasets, using exactly the same vocabulary and settingsh@ whole 1, int correspondences between images, speeding up the geometrical
technique, including feature extraction, requires 22ms pe frame in a ) } .
check during the loop veri cation.

sequence with 26300 images, being one order of magnitude fasthan ! ] ) ) ) )
previous approaches. The complete loop detection algorithm is detailed in Section V.

Index Terms—Place Recognition, Bag of Words, SLAM, Computer Similarly to our.previous work [5,6], tq decide that alloop has been
Vision. closed, we verify the temporal consistency of the image matches
obtained. One of the novelties in this paper is a technique to prevent
images collected in the same place from competing among them when
[. INTRODUCTION the database is queried. We achieve this by grouping together those

One of the most signi cant requirements for long-term visuafMages that depict the same place during the matching.
SLAM (Simultaneous Localization and Mappjngs robust place ~ Section VI contains the experimental evaluation of our work, in-
recognition. After an exploratory period, when areas non-observe#ding a detailed analysis of the relative merits of the different parts
for long are re-observed, standard matching algorithms fail. Whéhour algorithm. We present comparisons between the effectiveness
they are robustly detected, loop closures provide correct data as@bBRIEF and two versions of SURF features [11], the descriptor
ciation to obtain consistent maps. The same methods used for |6B@st used for loop closing. We also analyze the performance of the
detection can be used for robot relocation after track lost, due f@mporal and geometrical consistency tests for loop veri cation. We
example to sudden motions, severe occlusions or motion blur. In [DRlly present the results achieved by our technique after evaluating
we concluded that, for small environments, map-to-image methdéisin ve public datasets with0:7-4 Km long trajectories. We
achieve nice performance, but for large environments, image-tgemalemonstrate that we can run the whole loop detection procedure,
(or appearance-based) methods such as FAB-MAP [2] scale beti¢luding the feature extraction, H2ms in 26300 images2@ms on
The basic technique consists in building a database from the imag¥grage), outperforming previous techniques by more than one orde
collected online by the robot, so that the most similar one can B& magnitude.
retrieved when a new image is acquired. If they are similar enough,A Preliminary version of this work was presented in [12]. In the
a loop closure is detected. current paper we enhance the direct index technique and extend the

In recent years, many algorithms that exploit this idea hawgxperimental evaluation of our approach. We also report results in
appeared [2]-[6], basing the image matching on comparing them W datasets and make a comparison with the state-of-the-art FAB-
numerical vectors in the bag-of-words space [7]. Bags of worsisire MAP 2.0 algorithm [13].
in very effective and quick image matchers [8], but they are not a
perfect solution for closing loops, due mainly to perceptual aliasing Il. RELATED WORK

[6]. For this reason, a veri cation step is performed later by checking

the matching images to be geometrically consistent, requiring featurd 12C€ recognition based on appearance has obtained great attention
inghe robotics community because of the excellent results achieved

correspondences. The bottleneck of the loop closure algorithms e '
usually the extraction of features, which is around ten times mok&2:13:14]. An example of this is the FAB-MAP system [13], which

expensive in computation cycles than the rest of steps. This mi3§fects loops with an omnidirectional camera, obtaining a recall of
cause SLAM algorithms to run in two decoupled threads: one f§-4% and 3.1%, with no false positives, in trajectories 70 Km

perform the main SLAM functionality, and the other just to dete@"d 1000 Km in length. FAB-MAP represents images with a ba'g
loop closures, as in [5]. of words, and uses a Chow Liu tree to learn ofine the words

In this paper, we present a novel algorithm to detect loops afig"VisiPility probability. FAB-MAP has become the gold standard

establishing point correspondences between images in real time, Wifarding loop detection, but its robustness decreases when the
a conventional CPU and a single camera. Our approach is basedBAYES depict very §|mllar structures for a long time, which caq
bag of words and geometrical check, with several important noveltiB§ the case whgn using frontal_ cameras [5]. In the work of Angell
that make it much faster than current approaches. The main spEtdt- [4]. two visual vocabularies (for appearance and color) are
improvement comes from the use of a slightly modi ed version ¢fréated online in an incremental fashion. The two bag-of-words
the BRIEF descriptor [9] with FAST keypoints [10], as explained iﬁep_resentatlons are _used toget_h_er as input of a Bayesian _Iter _that
Section IIl. The BRIEF descriptor is a binary vector where each HiStimates the matching probability between two images, taking into
is the result of an intensity comparison between a given pair of pixél§count the matching probability of previous cases. In contrast to

around the keypoint. Although BRIEF descriptors are hardly invarialf}€s€ Probabilistic approaches, we rely on a temporal consistency
check to consider previous matches and enhance the reliability of

This research has been partly funded by the European Uniaterunthe detections. This technique has proven successful in our previous
project RoboEarth FP7-ICT-248942, the DirdutiGeneral de Investigami  works [5,6]. Our work also differs from the ones above in that we
of Spain under projects DP12009-13710, DPI2009-07130 &rdMinisterio | ge g bag of binary words for the rst time, as well as propose a

de Educadn (scholarship FPU-AP2008-02272). . . Lo S
The authors are with the Instituto de Investigacen Ingeniéa de Aragn technique to prevent images collected close in time and depicting the

(13A), Universidad de Zaragoza, Marde Luna 1, 50018 Zaragoza, SpainSame place from competing between them during the matching, so
f dorian, tardog@unizar.es. that we can work at a higher frequency.



IEEE TRANSACTIONS ON ROBOTICS, VOL. , NO. , MONTH, YEAR. SHORT PER 2

To verify loop closing candidates, a geometrical check is usual Vocabulary tree
performed. We apply an epipolar constraint to the best matchi =L
candidate as done in [4], but we take advantage of a direct index
calculate correspondence points faster. Konolige et al. [3] use vis =1 = Srect mdor oo T
odometry with a stereo camera to create in real time a view map of 1 o Y

environment, detecting loop closures with a bag-of-words approa Words e fohin
as well. Their geometrical check consists in computing a spat :
transformation between the matching images. However, they do | =
consider consistency with previous matches, and this leads thernr Inverse index Word 1
apply the geometrical check to several loop closing candidates. e R
In most loop closing works [4]-[6,14] the features used ar

SIFT [15] or SURF [11]. They are popular because they are inviarian ) ) )

fl . 1. Example of vocabulary tree and direct and inverse xeslehat

to lighting, scale and rotation changes and show a good behavio clﬂnpose the image database. The vocabulary words are thedda$ rof

view of slight perspective changes. However, these features usughy tree. The inverse index stores the weight of the word#iénimages in
require betweeri00 and 700ms to be computed, as reported by thevhich they appear. The direct index stores the featureseoiittages and their
above publications. Apart from GPU implementations [16], there afgsociated nodes at a certain level of the vocabulary tree.

other similar features that try to reduce this computation time by,

for example, approximating the SIFT descriptor [17] or reducing

the dimensionality [18]. The work of Konolige et al. [3] offers atest pointsa; andb; according to a normal distributioN (0; 5 Sf).
qualitative change, since it uses compact randomized tree signatdfewever, we found that using close test pairs yielded better results
[19]. This approach calculates the similarity between an image pafdz]: We select each coordinafe of these pairs by sampling the
and other patches previously trained in an of ine stage. The descripg¥stributionsal N (0; 5:S%) andbl N (a; 55 Sf). Note that
vector of the patch is computed by concatenating these similarif)is approach was also proposed by [9], but not used in their nal
values, and its dimensionality is nally reduced with random ortho€Xperiments. For the descriptor length and the patch size, we chose
projections. This yields a very fast descriptor, suitable for real-tinfer = 256 andSy, = 48, because they resulted in a good compromise
applications [19]. Our work bears a resemblance with [3] in that wRetween distinctiveness and computation time [12].

also reduce the execution time by using ef cient features. BRIEF The main advantage of BRIEF descriptors is that they are very
descriptors, along with other recent descriptors as BRISK [20] &st to compute (Calonder et al. [9] reporté@:3s per keypoint
ORB [21], are binary and require very little time to be computed. AghenL,, = 256 bits) and to compare. Since one of these descriptors
an advantage, their information is very compact, so that they occui§yjust a vector of bits, measuring the distance between two vectors
less memory and are faster to compare. This allows a much fagtaén be done by counting the amount of different bits between them

v =079 V. =073
] 52

conversion into the bag-of-words space. (Hamming distance), which is implemented with ®or operation.
This is more suitable in this case than calculating the Euclidean
[1l. BINARY FEATURES distance, as usually done with SIFT or SURF descriptors, composed

Extracting local features (keypoints and their descriptor vectors)@ oating point values.
usually very expensive in terms of computation time when comparing
images. This is often the bottleneck when these kinds of techniques
are applied to real-time scenarios. To overcome this problem, in this
work we use FAST keypoints [10] and the state-of-the-art BRIEF In order to detect revisited places we use an image database
descriptors [9]. FAST keypoints are corner-like points detected lmpmposed of a hierarchical bag of words [7,8] and direct and sever
comparing the gray intensity of some pixels in a Bresenham cirdledexes, as shown in Fig. 1.
of radius 3. Since only a few pixels are checked, these points areThe bag of words is a technique that uses a visual vocabulary
very fast to obtain proving successful for real-time applications. to convert an image into a sparse numerical vector, allowing to

For each FAST keypoint, we draw a square patch around thenanage big sets of images. The visual vocabulary is created of ine
and compute a BRIEF descriptor. The BRIEF descriptor of an imagg discretizing the descriptor space intg visual words. Unlike
patch is a binary vector where each bit is the result of an intensifjith other features like SIFT or SURF, we discretize a binary
comparison between two of the pixels of the patch. The patches aesscriptor space, creating a more compact vocabulary. In the case
previously smoothed with a Gaussian kernel to reduce noise. Giwsihthe hierarchical bag of words, the vocabulary is structured as a
beforehand the size of the patc®, the pairs of pixels to test are tree. To build it, we extract a rich set of features from some training
randomly selected in an of ine stage. In addition$g, we must set images, independently of those processed online later. The descriptors
the parametet.p: the number of tests to perform (i.e., the lengtiextracted are rst discretized intk,, binary clusters by performing
of the descriptor). For a point in an image, its BRIEF descriptor k-medians clustering with the k-means++ seeding [22]. The medians

IV. | MAGE DATABASE

vectorB (p) is given by: that result in a non binary value are truncatedOtoThese clusters
: 1 ifI(p+a)<l(p+bi) o form the rst level of nodes in the vocabulary tree. Subsequent levels
BIP)=  § stherwise 8i 2 [1:Lo] (1) are created by repeating this operation with the descriptors associated

, to each node, up tby, times. We nally obtain a tree withV leaves,
whereB'(p) is thei-th bit of the descriptor] () the intensity of which are the words of the vocabulary. Each word is given a weight
the pixel in the smoothed image, aadandb; the 2D offset of the according to its relevance in the training corpus, decreasing the weight
frth test poipt with respect fo the center of the patch, with value f those words which are very frequent and, thus, less discriminative

SbiirSe Sb::: S randomly selected in advance. NoteFor this, we use the term frequency — inverse document frequency
that this descriptor does not need training, just an of ine stage {t-idf), as proposed by [7]. Then, to convert an imdgetaken at
select random points that hardly takes time. The original BRIEF démet, into a bag-of-words vector; 2 RW | the binary descriptors of

scriptor proposed by Calonder et al. [9] selects each coordinate of ttsefeatures traverse the tree from the root to the leaves, by selecting
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at each level the intermediate nodes that minimize the HammiBg Match grouping

distance. o To prevent images that are close in time to compete among them
To measure the similarity between two bag-of-words vectars \hen the database is queried, we group them iistands and

andv, we calculate & ;-scores(v1;V2), whose value lies if0::1]:  treat them as only one match. We use the notafiprio represent

1 v Vo the interval composed of timestamps ;:::;tm,, and Vy, for an

s(vi;ve) =1 2 Vi jval (2) island that groups together the matches with entrigs, ..., Vi, .

Therefore, several matches vy; vy, >, ..., < V¢, Vg, > are
Along with the bag of words, an inverse index is maintained. Thigonverted into a single match v; ' Vy, > if the gapsl between
structure stores for each wowd in the vocabulary a list of imagds ~ consecutive timestamps i, , ..., tm, are small. The islands are

where it is present. This is very useful when querying the databaggso ranked according to a scdre
since it allows to perform comparisons only against those images that i
have some word in common with the query image. We augment the H(ve Vi) = (Ve: Vi) (4)
inverse index to store paiks| ¢; v; > to quickly access the weight ' !

of the word in the image. The inverse index is updated when a new . ) . . .
imagel is added to the database, and accessed when the data ggelsland with the highest score is selected as matching group and

is searched for some image continue to the temporal consistency step. Besides avoiding clashes

These two structures (the bag of words and the inverse index) gFetween consecutive images, the islands can help establish correct

often the only ones used in the bag-of-words approach for searchli tChe.S' Ilﬂ‘ aTdIttodrepreselnt a real loop cl(zisuﬂe, 'SI very.lllkelyé
images. However, as a novelty in this general approach, we also mg‘f«?e simifar aiso o ¢, 1t 2 t, ..., Producing fong Isiands.

j=ni

use of a direct index to conveniently store the features of each ima gice we deneH as the sum of scores, the H score favours

We separate the nodes of the vocabulary according to theirllémel atches with long islands as well.
the tree, starting at leaves, with levet 0, and nishing in the root,
| = Lw. For each imagé;, we store in the direct index the nodes a. Temporal consistency

level | that are ancestors of the words presentiinas well as the  After obtaining the best matching islardro, we check it for
list of local features'; associated to each node. We take advantagémporal consistency with previous queries. In this paper we extend
of the direct index and the bag-of-words tree to use them as a megqi$ temporal constraint applied in [5,6] to support islands. The
to approximate nearest neighbors in the BRIEF descriptor spaggatch< v,; Vyo > must be consistent witk previous matches
The direct index allows to speed up the geometrical verication by v, ; vr, >, ... < vy « ¢; Vr, >, such that the intervals

computing correspondences only between those features that belpngind T;., are close to overlap. If an island passes the temporal
to the same words, or to words with common ancestors atleféle  constraint, we keep only the matsh v¢; vio >, for thet® 2 T°
direct index is updated when a new image is added to the databafgt maximizes the score and consider it a loop closing candidate,

and accessed when a candidate matching is obtained and geometjigith has to be nally accepted by the geometrical veri cation stage.
check is necessary.

D. Ef cient geometrical consistency

V. LOOP DETECTION ALGORITHM . . .
We apply a geometrical check between any pair of images of a

To detect loop closures, we use a method based on our previtasp closing candidate. This check consists in nding with RANSAC
work [5,6] that follows the four stages detailed next. a fundamental matrix betwedn and .o supported by at least 12
correspondences. To compute these correspondences, weanust ¢
pare the local features of the query image with those of the matched
one. There are several approaches to perform this comparisen. Th

We use the image database to store and to retrieve images similagdgiest and slowest one is the exhaustive search, that consists in
any given one. When the last imageis acquired, it is converted into measuring the distance of each featurd ofo the features of;o in
the bag-of-words vector;. The database is searched ¥er resulting  the descriptor space, to select correspondences later according to the
in a list of matching candidates vi; v, >, < Vi; Vi, >, ..., nearest neighbor distance ratja5] policy. This is a( n?) operation
associated to their scoregvi;Vy; ). The range these scores variesn the number of features per image. A second technique consists in
is very dependent on the query image and the distribution of worgslculating approximate nearest neighbors by arranging the descriptor
it contains. We then normalize these scores with the best score wetors in k-d trees [27].
expect to obtain in this sequence for the veoter obtaining the  Following the latter idea, we take advantage of our bag-of-words
normalized similarity score [6]: vocabulary and reuse it to approximate nearest neighbors. For this

reason, when adding an image to the database, we store a list of pairs
(3) of nodes and features in the direct index. To obtain correspondences

betweenl; andlo, we look uplo in the direct index and perform
Here, we approximate the expected scorevpfwith s(vi;ve ), the comparison only between those features that are associated to the
wherev, . is the bag-of-words vector of the previous image. Thosgame nodes at levelin the vocabulary tree. This condition speeds up
cases whers(vi;v: ) is small (e.g. when the robot is turning)the correspondence computation. The parametexed beforehand
can erroneously cause high scores. Thus, we skip the images thaadd entails a trade-off between the number of correspondences
not reach a minimung(v¢; vy ) or a required number of features.obtained betweeh; andlo and the time consumed for this purpose.
This minimum score trades off the number of images that can B¢henl = 0, only features belonging to the same word are compared
used to detect loops with the correctness of the resulting score(as we presented in [12]), so that the highest speed-up is achieuted, b
We use a small value to prevent valid images from being discardéelver correspondences can be obtained. This makes the recall of the
We then reject those matches whose; v, ) does not achieve a complete loop detection process decrease due to some correct loops
minimum threshold, denoted. being rejected because of the lack of corresponding points. On the

A. Database query

S(Vi; Vi)

Vv suave o
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TABLE |
DATASETS
Dataset Camera | Description Total length | Revisited length| Avg. Sp(leed Image size
(m) (m) (m s ™) | (px_ px)
New College [23] Frontal Outdoors, dynamic 2260 1570 1:5 512 384
Bicocca 2009-02-25b [24] Frontal Indoors, static 760 113 0:5 640 480
Ford Campus 2 [25] Frontal Urban, slightly dynamic 4004 280 6:9 600 1600
Malaga 2009 Parking 6L [26] Frontal Outdoors, slightly dynamic 1192 162 2:8 1024 768
City Centre [2] Lateral Urban, dynamic 2025 801 - 640 480
other hand, wheh= L, the recall is not affected but the executior 1 P
. . . . ° e bk
time is not improved either. 0oL [ Vg .
We only require the fundamental matrix for veri cation, but note
that after calculating it, we could provide the data association betwe o8 ' ' i [

the images matched to any SLAM algorithm that would run beneat
with no extra cost.

0.7 5 [

Precision

0.61| —e—BRIEF, NewCollege
- - SURF 64, NewCollege
0.5 o U-SURF 128, NewCollege

VI. EXPERIMENTAL EVALUATION -=—BRIEF, Bicocca25b
. . . 0.471-m- SURF 64, Bicocca25b
We evaluate the different aspects of our proposal in the followir .|l»= U-SURF 128, Bicocca25b ‘ ‘ ‘ ‘ ‘
sections. In VI-A, we introduce the methodology we followed 05 055 06 065 07 075 08 08 09 095

Recall
evaluate our algorithm. Next, we compare the reliability of BRIEF

and SURF in our system in VI-B. In VI-C we analyze the effect ofig. 2. Precision-recall curves achieved by BRIEF, SURF&#&-SURF128
the temporal consistency of our algorithm, and in VI-D we check tHB the training datasets, without geometrical check.

ef ciency of our geometrical veri cation based on the direct index.
Finally, the execution time and the performance of our comple%

fien separate the datasets shown in Table | into two groups. We use
system are evaluated in VI-E and VI-F. P group

three of them that present heterogeneous environments with many

dif culties (NewCollege, Bicocca25b and Ford2) &aining datasets

A. Methodology to nd the best set of parameters of our algorithm. The other two
The aspects to evaluate loop detection results are usually assugi@i@sets (CityCentre and Malaga6L) are used\aduationdata to

to be of general knowledge. However, little detail is given in thealidate our nal conguration. In these cases, we only use our

literature. Here, we explain the methodology we followed to evalua@gorithm as a black box with a prede ned con guration.

our system. 5) Settings:Our algorithm is used with the same settings through-
1) Datasets: We tested our system in ve publicly availableOut all the experiments. The same vocabulary tree was used to

datasets (see Table 1). These present independent indoor and Biftcess all the datasets. This was built with = 10 branches and

door environments, and were collected at different speed by $evdra = 6 depth levels, yielding one million words, and trained with

platforms, with in-plane camera motion. CityCentre is a collectiofM features acquired from 10K images of an independent dataset

of images gathered at low frequency, with little overlap. The othefBovisa 2008-09-0124]). We used a threshold of 10 units in the

provide images at high frequencg £ 20 Hz). response function of FAST, and 500 in the Hessian response of SURF.
2) Ground truth: To measure the correctness of our results weor €ach processed image, we kept only the 300 features with highest

compare them with a ground-truth reference. Most of the datas€SPOnse.

used here do not provide direct information about loop closures, so

that we manually created a list of the actual loop closures. This 1Bt Descriptor effectiveness

is composed of time intervals, where each entry in the list encodesA BRIEF descriptor encodes much less information than a SURF

a query interval associated with a matching interval. descriptor, since BRIEF is not scale or rotation invariant. In order
3) Correctness measuralle measure the correctness of the loopo check if BRIEF is reliable enough to perform loop detection,

detection results with thprecisionandrecall metrics. The precision we compared its effectiveness with that of SURF. We selected two

is de ned as the ratio between the number of correct detections avetsions of SURF features: 64-dimensional descriptors with rotation

all the detections red, and the recall, as the ratio between the corré@otariance (SURF64) and 128-dimensional descriptors without rota-

detections and all the loop events in the ground truth. A match retibn invariance (U-SURF128). We selected them because they are the

by the loop detector is a pair of query and matching timestampssual choices for solving the loop detection problem [5,13].

To check if it is a true positive, the ground truth is searched for an We created vocabulary trees for SURF64 and U-SURF128 in the

interval that contains these timestamps. The number of loop eventsame way we built it for BRIEF and ran our system on Bicocca25b

the ground truth is computed as the length of all the query intervadad NewCollege, processing the image sequencés=a® Hz. We

in the ground truth multiplied by the frequency at which the imagegeactivated the geometrical veri cation, xed the required temporal

of the dataset are processed. When a query timestamp is associetegistency matchds to 3, and varied the value of the normalized

to more than one matching timestamp in the ground truth becausesiilarity threshold to obtain the precision-recall curves shown in

multiple traversals, only one of them is considered to compute thég. 2. The rst remark is that the curve of SURF64 dominates that

amount of loop events. of U-SURF128 on both datasets. We can also see that BRIEF offers
4) Selection of system parameteil§is common practice to tune a very competent performance compared with SURF. In Bicocca25b,

system parameters according to the evaluation data, but we thBIRIEF outperforms U-SURF128 and is slightly better than SURF64.

that using different data to choose the con guration of our algorithim NewCollege, SURF64 achieves better results than BRIEF, but

and to evaluate it demonstrates the robustness of our approach. BREEF still gives very good precision and recall rates.
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Fig. 3. Examples of words matched by using BRIEF (pair on thg &fd SURF64 descriptors (pair on the right).

To better illustrate the different abilities of BRIEF and SURF6:- 1
to nd correspondences, we have selected some loop events fr
the previous experiments. In Fig. 3 the features that are associe 0.81
to the same word of our vocabulary are connected with lines. The
are the only matches taken into account to compute the normaliz ;% oer s
similarity score. In most cases, BRIEF obtains as many corre §O‘47---f:1Hz'k:0 »
word correspondences as SURF64, in spite of the slight perspec ‘:‘I:éni t:g vt
changes, as shown in the rst example (rst row). In the secon 02/l—=f=2Hz k=3 g f
example, only BRIEF is able to close the loop, since SURF64 do :gzi tzg
not obtain enough word correspondences. These two examples s| % 02 0z o8 o8 1
that BRIEF nds correspondences in objects that are at a midc.. Recall

or large distance, such as the signs on the wall or the trees in [._tlxe 4. Precision-recall curves in Bicocca25b with no ivalt check
. . . . 4. geo check,

background. In general, distant objects are present in most of ﬂ}gseveral values of similarity threshold, number of temporally consistent
imagery of our datasets. Since the scale of the keypoints extractesichesk and processing frequendy.
from distant objects hardly varies, BRIEF is suitable to match their
patches. In cases where objects are close to the camera, SURF64 is
more suitable because of its invariance to scale changes. However, we
observed very few cases where this happened. In the third example . . .
of Fig. 3, the camera tilted, making the image appear rotated S, We ran our system in th? training datasetslvfnth 2 HZ’. for
some areas. This along with the scale change prevented BRIEF fr%%\/eral values dt and and.W|tho.ut any geometrical constrglnt. we
obtaining word correspondences. In this case, SURF64 overcahew%ted( for values betwgef_) (i.e., disabling the temporal consistency)
these dif culties and detected the loop. anda. We opserved a b'.g mpro_vement betwdgn 0 andk > 0 fo_r

Our results show that FAST features with BRIEF descriptors a?e" the W(())rklng f_re_quenues._Als increases, a higher recall is attaln_ed
almost as reliable as SURF features for loop detection problems wit th 100% precision, but this behavior does not hold for very high
in-plane camera motion. As advantages, not only they are much fa vt%lues O.fk’ since only very long clos.ur.es would be found: We chose
to obtain (13ms per image instead of 100—-400ms), but they al%o‘. 3 since it showed a good pfec's'o’.”e‘?a“ balance in the thrge
occupy less memory (32MB instead of 256MB to store a 1M Wor?alnlng datasets. We repeated this test in Bicocca25b for frequencies

vocabulary) and are faster to compare, speeding up the use of he 1 and3 Hz as well, to check how dependent paraméeis

. ; on the processing frequency. We show in Fig. 4 the precision-recall
hierarchical vocabulary. curves obtained in Bicocca25b by varying the parametéor clarity,

only k = 0 and 3 are shown. This shows the temporal consistency
is a valuable mechanism to avoid mismatches, as previously seen in
After selecting the features, we tested the nunibef temporally [12]. We can also see th&t = 3 behaves well even for different
consistent matches required to accept a loop closure candidate. frequency values, so that we can consider this parameter stable.

C. Temporal consistency
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TABLE Il
PERFORMANCE OF DIFFERENT APPROACHES TO OBTAIN 50 —Toml
CORRESPONDENCES INEWCOLLEGE Features

== Bag of words
=== Geometrical checking

N
o

) Execution time (ms / query 2
0, =
Technique | Recall (%) Median T Min Viax 5 30
Dlo 383 0:43 | 0:25 | 1650 z ?MWM
DIy 48:5 0:70 0:44 | 17:14 P |
DI, 56:1 0:78 0:50 19:26 2
Dl3 57:0 0:80 0:48 19:34 10
Flann 53:6 14:09 13:79 25:07
Exhaustive 61:2 14:17 | 13:65 | 24:68 o
5000 10000 Imageslsooo 20000 25000
D. Geometrical consistency Fig. 5. Execution time in NewCollege with 26292 images.
According to Fig. 4, we could select a restrictive value ofo TABLE Il

obtain 100% precision, but this would require to tune this parameter
for each dataset. Instead, we set a generic value and verify matches

EXECUTION TIME IN NEWCOLLEGE WITH 26292IMAGES

with a geometrical constraint consisting in nding a fundamental Execution time (ms 7 query)
matrix between two imagek andlo of a loop closing candidate. Mean [ Std [ Min [ Max
FAST 11:67 | 4:15 | 1:74 | 30:16

C}omputmg the correspondl.ng points betwderandlo is the most TFeatures Smoothing 096 | 037 | 079 | 251
time-consuming step of this stage. We compared our proposal p BRIEE 172 | 0149 | 151 | 462
using the direct index to compute correspondences, coined D Conversion 359 | 0:35 | 3:27 | 881

with the exhaustive search and a Flann-based approach [27]. Th%ag of words | QUETY 3:08 | 1:91 | 0:01 | 9:19
parameterl stands for the level in the vocabulary tree at which :rs]':‘:r‘tjizn 81? 858‘2‘ 8582 8%

the ancestor nodes are checked. In the Flann approach, the Flann c g
library [27] (as implemented in the OpenCV library) is used to build Verication | ~0T2B0CRICE] 1:60 | 2:64 | 0:61 | 18:55
a set qf kd-trees ywth the feature descrlptorslof This al!ows Whole system 2160 | 482 | 822 | 5168
to obtain for descriptors of.0 the approximate nearest neighbors

in 1. After computing distances with any of these methods, the

nearest neighbor distance ratio, with a threshold@f units, was images. Even withk = 3, the system yielded no false positives. This

applied. Although both the Flann and the vocabulary tree approach@s,vs that the behavior of the temporal consistency pararkeier

are useful to approximate nearest neighbors, they are conceptugiyie even for high frequencies.

different here: our vocabulary tree was created with training data, sorpo execution time consumed per image in that case is shown in

that the neighbpr search is based on independent data, whereaq;}a_es_ This was measured on a Intel Core i72B7GHz machine.

kd-trees are tailored to eadk. . ) We also show in Table Il the required time of each stage for
We ran each of the methods in the NewCollege datasetwit® s amount of images. Thieaturestime involves computing FAST

Hz, k =3, - (_):3' W(_e selected this dataset becausg 't_preseruéypoints and removing those with low corner response when there

the longest revisited trajectory and many perceptual aliasing casgs, i, many, as well as smoothing the image with a Gaussian

In Table Il we show the execution time of the geometrical Che%rnel and computing BRIEF descriptors. Theg-of-wordstime is

per query, along with the recall of the loop detector in each casgyit into four steps: the conversion of image features into a bag-

The precision wasl00% in all the cases. The time includes they \ 45 vector, the database query to retrieve similar images, the

computat?on of corresponding points, the RAN_SAC loops a_nd t_'}?eation and matching of islands, and the insertion of the current
computation of the fundamentgl matrices. The hlgh_est execution tltilﬁgage into the database (this also involves updating the direct and
of all the _meth_ods was obtained when the maximum numbe_r erse indexes). Theveri cation time includes both computing
RANSAC iterations was reached. The exhaustive search achieygs esnondences between the matching images, by means of the direct
higher recall than the other methods, which are approximate, Bliey “and the RANSAC loop to calculate fundamental matrices.
exhibits the highest execution time as well. We see that the Flannwe see that all the steps are very fast, including extracting the
method takes _nearly as long as the exhaustive search mEthOd' f'ébﬁ'ures and the maintenance of the direct and inverse indexes. This
speed-up obtgln_ed when computing the cqrrespondences IS not Wgﬂgws to obtain a system that runs 22ms per image, with a peak

the cost of building a Flann struct_ure Per image. On the other ha%q’less than52ms. The feature extraction stage presents the highest
Dly presents the smallest execution time, but also the lowest rec Ecution time: most of it, due to the overhead produced when there

level. As we noticed before [17], selecting correspondences o Ye too many features and only the b&80 ones must be considered.

from features belonging to the. same word is very resrictive Wh%{/en so, we have achieved a reduction of more than one order of
the r:/o(;:abu]!ary is big (ong rlnllklllonkvvlords?. Y\ve n(;ellly chgsbe lthemagnitude with respect to other features, such as SIFT or SURF,
Lnet od Db or”ouré,]eometr!ca check since It showed a goo aan?gmoving the bottleneck of these loop closure detection algorithms.
etween recall and execution time. In the bag-of-words stage, the required time of managing the islands
and the indexes is negligible, and the conversion of image features

E. Execution time into bag-of-words vectors takes as long as the database query. Its
To measure the execution time, we ran our system in the NewCekecution time depends on the number of features and the size of
lege dataset wittkk =3, = 0:3 and Dbh. By setting the working the vocabulary. We could reduce it by using a smaller vocabulary,

frequency tof = 2 Hz, a total of5266 images were processed,since we are using a relatively big on&M words, instead ofLlO-
yielding a system execution time &6 ms per image on average andé0K [5,14]). However, we found that a big vocabulary produces more
a peak of less thaB8 ms. However, in order to test the scalability ofsparse inverse indexes associated to words. Therefore, wherirguer

the system, we set the frequencyfte= 10 Hz and obtaine®6292 fewer database entries must be traversed to obtain the results. This
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TABLE IV TABLE V
PARAMETERS PRECISION AND RECALL OF OUR SYSTEM
FAST threshold 10 Dataset # Images| Precision (%)| Recall (%)
BRIEF descriptor lengthl(y) 256 NewCollege 5266 100 55:92
BRIEF patch size %p) 48 Bicocca25b 4924 100 81:20
Max. features per image 300 Ford2 1182 100 79:45
Vocabulary branch factork(, ) 10 Malaga6L 869 100 74:75
Vocabulary depth levels.(y) 6 CityCentre 2474 100 30:61
Min. score with previous images(vi;vy ¢)) | 0:005
Temporally consistent matchels)( 3 TABLE VI
Normalized similarity score threshold { 0:3 PRECISION AND RECALL OFFAB-MAP 2.0
Direct index level () 2
Min. matches after RANSAC 12 Dataset # Images| Min. p | Precision (%)| Recall (%)
Malaga6L 462 98% 100 68:52
CityCentre 2474 98% 100 38:77
1r -«----o--o-co--o---oo-(:)m% e T

In order to check the reliability of our algorithm with new datasets,
we used Malaga6L and CityCentre as evaluation datasets. For these,
we used our algorithm as a black box, with the default con guration
given above and the same vocabulary. For Malaga6L, we processed

Precision
o
©o
(2]
:

-e-NewCollege

0,941 1 Bicocen25h the sequence a@ = 2 Hz, and for CityCentre, we used all the
Ford2 : images, since these are already taken far apart. We also compared
0gpl22=08 | ‘ ‘ ‘ ‘ . our algorithm with the state-of-the-art FAB-MAP 2.0 algorithm [13],
’ 8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 con i H Ho ' ]5 :
Recall gured by default as it is available in its authors' websit&iven

a query image, FAB-MAP returns a vector with the probability
Fi_g. 6. Final precision-recal[ curves in the training dataswithf =2 Hz, of being at the same place than some previous image. Only those
with the selected working point = 0:3. matches withp higher than a threshold are accepted. This parameter
must be set by the user. We choge 98% because it showed

. 0 o
reduces the execution time strikingly when querying, trading off, b’g}k{le highest recall fol00% precision in these datasets. Table V and

far, the time required when converting a new image. We conclude tqﬁzﬁs\sll vsvre]o:;;g?krgiugzvxllntr:igecg\sll;?it;cc))r;\ szgse;?];orrgreds_m&;f
big vocabularies can improve the computation time when using lar ’ P P y
Fli\P 2.0 software does not apply any geometrical constraint to

image collections. Furthermore, note that querying a database N retumned matches by default. so we applied a veri cation stage
more than 26K images také&sms only, suggesting this step scaleé. retu S Dy cefaull, S0 we appll vercation stag
imilar to ours, consisting in computing a fundamental matrix with

well with tens of thousands images. The geometrical veri catio . .

exhibits a long execution time in the worst case, but as we sawgne exhaustive se:lrdc_h_ mithOd' TheFmpl:\; flor FQLB'MAPf iotmutsht
the previous section, this rarely occurs, whereas/&% of the cases . €a setqtliencet ? ISjomn Hlm?/%es.l OI . (;Z%a d(;NSe He bl tWI
require less thar:6ms. images taken at frequendyHz. We also tried):25 and0:5 Hz, bu

Our results show that we can reliably detect loops against databa%é_éz y|eld_ed better results. For Clty_Centre, we used all the available
with 26K images in52ms @2ms on average). This representémages' Finally, FAB-MAP 2.0 provides a vocabulary of 11K words

an improvement of one order of magnitude with respect to tf?g 128 oat values, built from outdoor disjoint images, whereas our

300-700ms required by algorithms based on SIFT or SURF [4]Xocabulary contains 1M words of 256 bits, created from a sequence

[6,13,14]. For example, the state-of-the-art algorithm FAB-MAP Z.Bf IMages. . . .

[13] needs423ms for extracting SURFEOMSs for conversion into As shown in Table V, our algorithm with the parameters by default
bag of words,10ms for retrieving matching candidates against 25' able to achieve large recall with no false positives in both evaluation
images, andé&ns (worst case) for RANSAC geometric veri cation. atasets. Our recall level is similar to that yielded by FAB-MAP 2.0,

Our algorithm also outperforms the extremely ef cient loop detectcprUt with lower execution time. In the Malaga6L dataset, all the loops

developed by Konolige et al. [3], based on compact randomized t re c_orrect in spite of _the i_IIumination_dif culties and the depth of
signatures. According to their gure 6, the method requires arourije views. The results in CityCentre differ between our method and

300ms to perform the complete loop detection against a datab s%B-MAP 2.0 bepause the change bgtwgen loop closure images is
with 4K images. igger than that in other datasets. This hinders the labor of the DI

technique because features are usually more distinct and are sdparate

in early levels in the vocabulary tree. Note that this highlights the
F. Performance of the nal system little invariance of BRIEF, since others as SURF may be able to

In previous sections we showed the effect of the parameters @bduce more similar features between the images. Anyhow, we see

our system in the correctness of the results. For our algorithm weat our method is still able to nd a large amount of loop events in
chose the generic parametdrss 3, = 0:3, and the DI method this dataset. This test shows that our method can work ne out of
for computing correspondences, since they proved effectiverundige box in many environments and situations, and that it is able to
several kinds of environments in the training datasets. A summagype with sequences of images taken at low or high frequency, as
with the parameters of the algorithm and the vocabulary is showsng as they overlap. We can also remark that the same vocabulary
in Table IV. In Fig. 6 we show the precision-recall curves obtainesuf ced to process all the datasets. This suggests that the source of
in these datasets with these parameters, processing the sequencgg aocabulary is not so important when it is big enough.
f =2 Hz. In Table V we show the gures of those curves with We show in Fig. 7 the detected loops in each dataset. No false
the nal con guration. We achieved a high recall rate in the three
datasets with no false positives. http://www.robots.ox.ac.uk/mobile
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detections were red. The trajectory in NewCollege is based or4] A. Angeli, D. Filliat, S. Doncieux, and J. Meyer, “Fastdincremental
partially corrected GPS data, so that some paths are inaccurately method for loop-closure detection using bags of visual WorsEE
depicted. Note that part of the vehicle where the camera is mountig Transactions on Roboticsol. 24, no. 5, pp. 10271037, 2008.

. . . . P. Pinés, L. M. Paz, D. @lvez-Lbpez, and J. D. Tafs, “Cl-Graph
is present in all the images of Ford2; we removed the features that | SLAM for 3D Reconstruction of Large and Complex Environments

on it. We see that detectirsh:92% of the loop events is enough to, using a Multicamera Systemihternational Journal of Field Robotics
for example, widely cover all the loop areas in a long trajectory as that  vol. 27, no. 5, pp. 561-586, September/October 2010.
of NewCollege. On the right hand side of Fig. 7, we show examples dfl C: Cadena, D. Glvez-Lopez, J. D. Tards, and J. Neira, “Robust place

. : - . . recognition with stereo sequencesEEE Transactions on Robotics
correct loop detections in the training and evaluation datasets, with | ;¢ 28, 0. 4, p. (to appear), 2012.

the nal Corresponding features. These eXampleS make the ||m|tqd] J. Sivic and A. Zisserman’ “Video Goog|e: A text retrie\mproach
scale invariance of BRIEF descriptors apparent. Most of the features to object matching in videos,” iHEEE International Conference on
matched are distant, as we noticed in Section VI-B. The scale chanz[g?(i gompltlmf \ﬁzlolﬂvgli 2, O_CtobgrSZOIO%I pp. 1470_;1477;m/ bu

: : . Nister an . ewenius, Calable recognition witrhv@abulary
that BRIEF tplerates is shown in the correspondences that are close. tree” in IEEE Conference on Computer Vision and Pattern Recognition
the camera in NewCollege and Bicocca25b, and those on the cars in o 2, 2006, pp. 2161-2168.
Malaga6L. However, BRIEF cannot handle such a large scale chan{g M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEFnay
as that produced on the car in CityCentre, where all correspondences Robust Independent Elementary Features Eimopean Conference on
were obtained from distant features. On the other hand, wheneyer Computer Visionvol. 6314, September 2010, pp. 778-792.

) . l/ E. Rosten and T. Drummond, “Machine learning for highexpeorner

features are matched in background objects, a loop can be dete ]feh

. ) ) SH TEJERLS, G detection,” in European Conference on Computer Visiaol. 1, May
despite medium translations. This is visible in CityCentre and Ford2, 2006, pp. 430-443.

where the vehicle moved along different lanes of the road. [11] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Sge¢ Up
Robust FeaturesComputer Vision and Image Understandingl. 110,
VIl. CONCLUSIONS no. 3, pp. 346-359, June 2008.

) . [12] D. Galvez-Lopez and J. D. Tafb, “Real-time loop detection with bags
We have presented a novel technique to detect loops in monocular of binary words,” inlEEE/RSJ International Conference on Intelligent

sequences. The main conclusion of our work is that binary fea- Robots and SystemSeptember 2011, pp. 51-58.

tures are very effective and extremely ef cient in the bag-of-wordd3] M. Cummins and P. Newman, “Appearance-only SLAM at largalesc
approach. In particular, our results demonstrate that FAST+BRIEF wh3'?)A?1_0MA9Ppiloilgg(illztze\o:nﬂ%r:gt ‘]Z%ulr?al of Robotics Research
features are as reliable as SURF (either with 64 dimensions or Wji] R. paul and P. Newman, “FAB-MAP 3D: Topological mappingttwi
128 and without rotation invariance) for solving the loop detection  spatial and visual appearance,” IBEEE International Conference on
problem with in-plane camera motion, the usual case in mobile Robotics and AutomatioriMay 2010, pp. 2649-2656. )
robots. The execution time and memory requirements are one orlfel D- Lowe, “Distinctive image features from scale-inzmt keypoints,”

. . . . International Journal of Computer Visiorvol. 60, no. 2, pp. 91-110,
of magnitude smaller, without requiring special hardware. November 2004. P 0 PP

The reliability and ef ciency of our proposal have been shown of16] S. Heymann, K. Maller, A. Smolic, B. Froehlich, and T. Waewgl,
ve very different public datasets depicting indoor, outdoor, static  “SIFT implementation and optimization for general-purposeUGRn
and dynamic environments, with frontal or lateral cameras. Depart- nternational Conference in Central Europe on Computer (@rias,
ing from most previous works, to avoid over-tuning, we restricteﬂn m_sggﬁrfg‘ Shg;grﬁg?tae;(j\ﬁs{ogiigﬁi? ulzzggzéppmxm”:.r’,, in
ourselves to present all results using the same vocabulary, obtained asjan Conference on Computer VisiorSpringer, 2006, pp. 918-927.
from an independent dataset, and the same parameter con guratjag] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctivpnesentation
obtained from a set of training datasets, without peeking on the for local image descriptors,” ifEEE Conference on Computer Vision
evaluation datasets. So, we can claim that our system offers ro 35 and Pattern Recognitionvol. 2, June 2004, pp. 506-513.

- ; . . ; ; M. Calonder, V. Lepetit, P. Fua, K. Konolige, J. BowmamdaP. Mi-
and ef cient performance in a wide range of real situations, without helich, “Compact signatures for high-speed interest poecdption

any additional tuning. and matching,” inEEE International Conference on Computer Vision
The main limitation of our technique is the use of features that October 2010, pp. 357-364. _ ‘

lack rotation and scale invariance. It is enough for place recogniti&#! m\'/a?i-aﬁttegEggbl_lgu;e;;r?o%g{sanﬁiSEESIFn%\éﬁ;’tio?];ISgén?érrlsr?cbeusén
in |r1door and urpan robots, but surely not for all-terraln or aerlgl Computer VisionNovember 2011, Dp. 2548 —2555.
vehicles, humanoid robots, wearable cameras, or object recognitign] . Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORSx Ef cient
However, our demonstration of the effectiveness of the binary bag- Alternative to SIFT or SURF,” inlEEE International Conference on
of-words approach paves the road for the use of new and promising Computer VisionNovember 2011, pp. 2564-2571.
binary features such as ORB [21] or BRISK [20], which outperfordf?] D: Arthur and S. Vassilvitskii, *k-means++: The advagea of careful
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Fig. 7. Loops detected by our system in the ve datasets (fugmo down: NewCollege, Bicocca25b, Ford2, Malaga6L, Céyte), with some examples
of correct loops detected in scenes with motion blur and skghle and perspective change. On the right hand side,degist nal corresponding features.
On the left hand side, the trajectory of the robot is depietéti thin black lines in new places, and with thick red linesrévisited areas. There are no false
positives in any case.



